University of Kaiserslautern-Landau, MODE Collaboration
Abstract:Pseudo-count is an effective anti-exploration method in offline reinforcement learning (RL) by counting state-action pairs and imposing a large penalty on rare or unseen state-action pair data. Existing anti-exploration methods count continuous state-action pairs by discretizing these data, but often suffer from the issues of dimension disaster and information loss in the discretization process, leading to efficiency and performance reduction, and even failure of policy learning. In this paper, a novel anti-exploration method based on Vector Quantized Variational Autoencoder (VQVAE) and fuzzy clustering in offline RL is proposed. We first propose an efficient pseudo-count method based on the multi-codebook VQVAE to discretize state-action pairs, and design an offline RL anti-exploitation method based on the proposed pseudo-count method to handle the dimension disaster issue and improve the learning efficiency. In addition, a codebook update mechanism based on fuzzy C-means (FCM) clustering is developed to improve the use rate of vectors in codebooks, addressing the information loss issue in the discretization process. The proposed method is evaluated on the benchmark of Datasets for Deep Data-Driven Reinforcement Learning (D4RL), and experimental results show that the proposed method performs better and requires less computing cost in multiple complex tasks compared to state-of-the-art (SOTA) methods.
Abstract:Most existing CLIP-style medical vision--language pretraining methods rely on global or local alignment with substantial paired data. However, global alignment is easily dominated by non-diagnostic information, while local alignment fails to integrate key diagnostic evidence. As a result, learning reliable diagnostic representations becomes difficult, which limits their applicability in medical scenarios with limited paired data. To address this issue, we propose an LLM-Guided Diagnostic Evidence Alignment method (LGDEA), which shifts the pretraining objective toward evidence-level alignment that is more consistent with the medical diagnostic process. Specifically, we leverage LLMs to extract key diagnostic evidence from radiology reports and construct a shared diagnostic evidence space, enabling evidence-aware cross-modal alignment and allowing LGDEA to effectively exploit abundant unpaired medical images and reports, thereby substantially alleviating the reliance on paired data. Extensive experimental results demonstrate that our method achieves consistent and significant improvements on phrase grounding, image--text retrieval, and zero-shot classification, and even rivals pretraining methods that rely on substantial paired data.
Abstract:High-fidelity rendering of dynamic humans from monocular videos typically degrades catastrophically under occlusions. Existing solutions incorporate external priors-either hallucinating missing content via generative models, which induces severe temporal flickering, or imposing rigid geometric heuristics that fail to capture diverse appearances. To this end, we reformulate the task as a Maximum A Posteriori estimation problem under heteroscedastic observation noise. In this paper, we propose U-4DGS, a framework integrating a Probabilistic Deformation Network and a Double Rasterization pipeline. This architecture renders pixel-aligned uncertainty maps that act as an adaptive gradient modulator, automatically attenuating artifacts from unreliable observations. Furthermore, to prevent geometric drift in regions lacking reliable visual cues, we enforce Confidence-Aware Regularizations, which leverage the learned uncertainty to selectively propagate spatial-temporal validity. Extensive experiments on ZJU-MoCap and OcMotion demonstrate that U-4DGS achieves SOTA rendering fidelity and robustness.
Abstract:End-to-end (E2E) autonomous driving has recently attracted increasing interest in unifying Vision-Language-Action (VLA) with World Models to enhance decision-making and forward-looking imagination. However, existing methods fail to effectively unify future scene evolution and action planning within a single architecture due to inadequate sharing of latent states, limiting the impact of visual imagination on action decisions. To address this limitation, we propose DriveWorld-VLA, a novel framework that unifies world modeling and planning within a latent space by tightly integrating VLA and world models at the representation level, which enables the VLA planner to benefit directly from holistic scene-evolution modeling and reducing reliance on dense annotated supervision. Additionally, DriveWorld-VLA incorporates the latent states of the world model as core decision-making states for the VLA planner, facilitating the planner to assess how candidate actions impact future scene evolution. By conducting world modeling entirely in the latent space, DriveWorld-VLA supports controllable, action-conditioned imagination at the feature level, avoiding expensive pixel-level rollouts. Extensive open-loop and closed-loop evaluations demonstrate the effectiveness of DriveWorld-VLA, which achieves state-of-the-art performance with 91.3 PDMS on NAVSIMv1, 86.8 EPDMS on NAVSIMv2, and 0.16 3-second average collision rate on nuScenes. Code and models will be released in https://github.com/liulin815/DriveWorld-VLA.git.
Abstract:Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
Abstract:Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
Abstract:The safe deployment of autonomous driving (AD) systems is fundamentally hindered by the long-tail problem, where rare yet critical driving scenarios are severely underrepresented in real-world data. Existing solutions including safety-critical scenario generation and closed-loop learning often rely on rule-based heuristics, resampling methods and generative models learned from offline datasets, limiting their ability to produce diverse and novel challenges. While recent works leverage Vision Language Models (VLMs) to produce scene descriptions that guide a separate, downstream model in generating hazardous trajectories for agents, such two-stage framework constrains the generative potential of VLMs, as the diversity of the final trajectories is ultimately limited by the generalization ceiling of the downstream algorithm. To overcome these limitations, we introduce VILTA (VLM-In-the-Loop Trajectory Adversary), a novel framework that integrates a VLM into the closed-loop training of AD agents. Unlike prior works, VILTA actively participates in the training loop by comprehending the dynamic driving environment and strategically generating challenging scenarios through direct, fine-grained editing of surrounding agents' future trajectories. This direct-editing approach fully leverages the VLM's powerful generalization capabilities to create a diverse curriculum of plausible yet challenging scenarios that extend beyond the scope of traditional methods. We demonstrate that our approach substantially enhances the safety and robustness of the resulting AD policy, particularly in its ability to navigate critical long-tail events.
Abstract:Composed Image Retrieval (CIR) enables image search by combining a reference image with modification text. Intrinsic noise in CIR triplets incurs intrinsic uncertainty and threatens the model's robustness. Probabilistic learning approaches have shown promise in addressing such issues; however, they fall short for CIR due to their instance-level holistic modeling and homogeneous treatment of queries and targets. This paper introduces a Heterogeneous Uncertainty-Guided (HUG) paradigm to overcome these limitations. HUG utilizes a fine-grained probabilistic learning framework, where queries and targets are represented by Gaussian embeddings that capture detailed concepts and uncertainties. We customize heterogeneous uncertainty estimations for multi-modal queries and uni-modal targets. Given a query, we capture uncertainties not only regarding uni-modal content quality but also multi-modal coordination, followed by a provable dynamic weighting mechanism to derive comprehensive query uncertainty. We further design uncertainty-guided objectives, including query-target holistic contrast and fine-grained contrasts with comprehensive negative sampling strategies, which effectively enhance discriminative learning. Experiments on benchmarks demonstrate HUG's effectiveness beyond state-of-the-art baselines, with faithful analysis justifying the technical contributions.
Abstract:Precise localization of GUI elements is crucial for the development of GUI agents. Traditional methods rely on bounding box or center-point regression, neglecting spatial interaction uncertainty and visual-semantic hierarchies. Recent methods incorporate attention mechanisms but still face two key issues: (1) ignoring processing background regions causes attention drift from the desired area, and (2) uniform modeling the target UI element fails to distinguish between its center and edges, leading to click imprecision. Inspired by how humans visually process and interact with GUI elements, we propose the Valley-to-Peak (V2P) method to address these issues. To mitigate background distractions, V2P introduces a suppression attention mechanism that minimizes the model's focus on irrelevant regions to highlight the intended region. For the issue of center-edge distinction, V2P applies a Fitts' Law-inspired approach by modeling GUI interactions as 2D Gaussian heatmaps where the weight gradually decreases from the center towards the edges. The weight distribution follows a Gaussian function, with the variance determined by the target's size. Consequently, V2P effectively isolates the target area and teaches the model to concentrate on the most essential point of the UI element. The model trained by V2P achieves the performance with 92.4\% and 52.5\% on two benchmarks ScreenSpot-v2 and ScreenSpot-Pro (see Fig.~\ref{fig:main_results_charts}). Ablations further confirm each component's contribution, underscoring V2P's generalizability in precise GUI grounding tasks and its potential for real-world deployment in future GUI agents.
Abstract:In autonomous driving, Vision Language Models (VLMs) excel at high-level reasoning , whereas semantic occupancy provides fine-grained details. Despite significant progress in individual fields, there is still no method that can effectively integrate both paradigms. Conventional VLMs struggle with token explosion and limited spatiotemporal reasoning, while semantic occupancy provides a unified, explicit spatial representation but is too dense to integrate efficiently with VLMs. To address these challenges and bridge the gap between VLMs and occupancy, we propose SparseOccVLA, a novel vision-language-action model that unifies scene understanding, occupancy forecasting, and trajectory planning powered by sparse occupancy queries. Starting with a lightweight Sparse Occupancy Encoder, SparseOccVLA generates compact yet highly informative sparse occupancy queries that serve as the single bridge between vision and language. These queries are aligned into the language space and reasoned by the LLM for unified scene understanding and future occupancy forecasting. Furthermore, we introduce an LLM-guided Anchor-Diffusion Planner featuring decoupled anchor scoring and denoising, as well as cross-model trajectory-condition fusion. SparseOccVLA achieves a 7% relative improvement in CIDEr over the state-of-the-art on OmniDrive-nuScenes, a 0.5 increase in mIoU score on Occ3D-nuScenes, and sets state-of-the-art open-loop planning metric on nuScenes benchmark, demonstrating its strong holistic capability.